Detecting expert’s eye using a multiple-kernel Relevance Vector Machine

  • Giuseppe Boccignone Dip. Informatica, Universit`a di Milano, Italy
  • Mario Ferraro Dip. Fisica, Universit`a di Torino, Italy
  • Sofia Crespi LAPCO - Universit`a Vita-Salute San Raffaele, & CERMAC, Ospedale San Raffaele, Italy
  • Carlo Robino LAPCO - Universit`a Vita-Salute San Raffaele, Italy
  • Claudio de’Sperati LAPCO - Universit`a Vita-Salute San Raffaele, Italy
Keywords: eye movements, expertise, billiards, mind reading, machine learning, feature fusion, relevance vector machine


Decoding mental states from the pattern of neural activity or overt behavior is an intensely pursued goal. Here we applied machine learning to detect expertise from the oculomotor behavior of novice and expert billiard players during free viewing of a filmed billiard match with no specific task, and in a dynamic trajectory prediction task involving ad-hoc, occluded billiard shots. We have adopted a ground framework for feature space fusion and a Bayesian sparse classifier, namely, a Relevance Vector Machine. By testing different combinations of simple oculomotor features (gaze shifts amplitude and direction, and fixation duration), we could classify on an individual basis which group - novice or expert - the observers belonged to with an accuracy of 82% and 87%, respectively for the match and the shots. These results provide evidence that, at least in the particular domain of billiard sport, a signature of expertise is hidden in very basic aspects of oculomotor behavior, and that expertise can be detected at the individual level both with ad-hoc testing conditions and under naturalistic conditions - and suitable data mining. Our procedure paves the way for the development of a test for the “expert’s eye”, and promotes the use of eye movements as an additional signal source in Brain-Computer-Interface (BCI) systems.
How to Cite
Boccignone, G., Ferraro, M., Crespi, S., Robino, C., & de’Sperati, C. (2014). Detecting expert’s eye using a multiple-kernel Relevance Vector Machine. Journal of Eye Movement Research, 7(2).

Most read articles by the same author(s)