A single-camera gaze tracking system under natural light
Abstract
Gaze tracking is a human-computer interaction technology, and it has been widely studied in the academic and industrial fields. However, constrained by the performance of the specific sensors and algorithms, it has not been popularized for everyone. This paper proposes a single-camera gaze tracking system under natural light to enable its versatility. The iris center and anchor point are the most crucial factors for the accuracy of the system. The accurate iris center is detected by the simple active contour snakuscule, which is initialized by the prior knowledge of eye anatomical dimensions. After that, a novel anchor point is computed by the stable facial landmarks. Next, second-order mapping functions use the eye vectors and the head pose to estimate the points of regard. Finally, the gaze errors are improved by implementing a weight coefficient on the points of regard of the left and right eyes. The feature position of the iris center achieves an accuracy of 98.87% on the GI4E database when the normalized error is lower than 0.05. The accuracy of the gaze tracking method is superior to the-state-of-the-art appearance-based and feature-based methods on the EYEDIAP database.
License
Copyright (c) 2018 Feng Xiao, Dandan Zheng, Kejie Huang, Yue Qiu, Haibin Shen
This work is licensed under a Creative Commons Attribution 4.0 International License.